Recovering Structured Signals in Noise: Least-Squares Meets Compressed Sensing

نویسندگان

  • Christos Thrampoulidis
  • Babak Hassibi
چکیده

The typical scenario that arises in most “big data” problems is one where the ambient dimension of the signal is very large (e.g. high resolution images, gene expression data from a DNA microarray, social network data, etc.), yet is such that its desired properties lie in some low dimensional structure (sparsity, low-rankness, clusters, etc.). In the modern viewpoint, the goal is to come up with efficient algorithms to reveal these structures and for which, under suitable conditions, one can give theoretical guarantees. We specifically consider the problem of recovering such a structured signal (sparse, low-rank, block-sparse, etc.) from noisy compressed measurements. A general algorithm for such problems, commonly referred to as generalized LASSO, attempts to solve this problem by minimizing a leastsquares cost with an added “structure-inducing” regularization term (`1 norm, nuclear norm, mixed `2/`1 norm, etc.). While the LASSO algorithm has been around for 20 years and has enjoyed great success in practice, there has been relatively little analysis of its performance. In this chapter, we will provide a full performance analysis and compute, in closed form, the mean-square-error of the reconstructed signal. We will highlight some of the mathematical vignettes necessary for the analysis, make connections to noiseless compressed sensing and proximal denoising, and will emphasize the central role of the “statistical dimension” of a structured signal. Christos Thrampoulidis California Institute of Technology, e-mail: [email protected] Samet Oymak California Institute of Technology, e-mail: [email protected] Babak Hassibi California Institute of Technology e-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Perturbations in Compressed Sensing

We analyze the Basis Pursuit recovery of signals when observing K-sparse data with general perturbations (i.e., additive, as well as multiplicative noise). This completely perturbed model extends the previous work of Candès, Romberg and Tao on stable signal recovery from incomplete and inaccurate measurements. Our results show that, under suitable conditions, the stability of the recovered sign...

متن کامل

Efficient ℓq Minimization Algorithms for Compressive Sensing Based on Proximity Operator

This paper considers solving the unconstrained lq-norm (0 ≤ q < 1) regularized least squares (lq-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the proximity operator for nonconvex lq-norm functions into the fast iterative shrinkage/thresholding (FISTA) and the alternative direction method of multipliers...

متن کامل

General Perturbations of Sparse Signals in Compressed Sensing

We analyze the Basis Pursuit recovery of signals when observing sparse data with general perturbations. Previous studies have only considered partially perturbed observations Ax+e. Here, x is a K-sparse signal which we wish to recover, A is a measurement matrix with more columns than rows, and e is simple additive noise. Our model also incorporates perturbations E (which result in multiplicativ...

متن کامل

Compressive Sensing for Ultrasound RF Echoes Using α-Stable Distributions

This paper introduces a novel framework for compressive sensing of biomedical ultrasonic signals based on modelling data with stable distributions. We propose an approach to `p norm minimisation that employs the iteratively reweighted least squares (IRLS) algorithm but in which the parameter p is judiciously chosen by relating it to the characteristic exponent of the underlying alpha-stable dis...

متن کامل

Compressive Sensing Based Parameter Esti- Mation for Monostatic Mimo Noise Radar

The novelty of this letter is that it capitalizes on noise waveform to construct measurement operator at the transmitter and presents a new method of how the analogue to digital converter (ADC) sampling rate in the monostatic multiple-input multiple-output (MIMO) noise radar can be reduced — without reduction in waveform bandwidth — through the use of compressive sensing (CS). The proposed meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015